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AB
STRACT gqo o\

The analytical procedures described were developed to support an
experimental investigation of the thermal conductivity of noble gases
in a constant-area shock tube. To provide a more efficient means of
choosing initial pressures for the driver and driven gases in the tube,
the gas dynamic equations were solved by an iterative method, and
curves were plotted for ten combinations of helium or argon driving
helium, neon, argon, krypton, or xenon. From these curves, the initial
shock tube pressures may be easily determined for any given set of

stagnation conditions.
ﬁ/w’?//’w rF

I. INTRODUCTION

The purpose of this Report is to present the results of a parametric study
which was initiated to cnnnart the thermal-canductivity evperiments heing con-
ducted in the 3-in.-D shock tube. In these experiments, the stagnation conditions
existing behind the reflected shock wave were used to measure the thermal con-
ductivity of various noble gases. For each set of stagnation conditions desired for
the experimental program, it was necessary to solve the gas dynamic equations
by an iterative method to obtain the required initial driver-gas and driven-gas
pressures in the shock tube.

During the early stages of the thermal-conductivity experiments, it became
obvious that a more efficient method of choosing the initial pressures was needed.
To accomplish this, a digital computer was used to solve the ideal-gas dynamic
equations, from which curves of driver pressure versus driven pressure were pre-
pared with stagnation pressure and temperature as parameters. The shock tube
gases used for the graphs presented here were combinations of helium or argon
driving helium, neon, argon, krypton, or xenon,
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Il. ANALYTICAL PROCEDURE

A. Shock Tube Equations

The ratio of specific heats for the gases considered here is y = 5/3. The
applicable ideal-gas dynamic equations are as follows:

From Ref. 2, p. 59,

P 2 2}'1

=1+ M:—1)= 1950 M2 — 0.250 (1)
P1 Y1 + 1 ( )
From Ref. 1, p. 83,
+2 P, P
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From Ref. 2, p. 64,
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And, from Ref. 1, p. 69,
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where
a; ___( Y1 M, T, )1/2 (9)
as Y4 M, T4
Also,
P
P, = Pi P, (10)

B. Method of Computation

The computer procedures employed in this study are outlined below:

1. Equations 1 to 6 were solved for a shock Mach number range of 1.10 to
7.00. These solutions are plotted in Figs. 1 and 2.

2. Using Eq. 7, the initial driven pressure P, was calculated for each Mach
number by setting the reflected pressure P; equal to 1, 2, and 5 atm.

3. For neon as the driven gas and helium as the driver gas, the shock tube
pressure ratio P,/P, was calculated from Eq. 8 for each Mach number.

4. Applying the results of steps 2 and 3 to Eq. 10 for each Mach number, the
driver pressure P, was calculated for P; = 1, 2, and 5 atm.

5. Steps 3 and 4 were repeated for argon driving neon.

6. Steps 3, 4, and 5 were repeated for each of the other driven gases.

HI. RESULTS

The final results of the computer calculations are shown in the working curves
of Figs. 3 to 12. The stagnation conditions are presented in the form of T; iso-
thermal lines and P; isobaric lines, while P, and P, are shown in units consistent
with most shock tube measuring apparatus. From these curves, the initial shock
tube pressures are easily found for any desired set of stagnation conditions.

It should be noted that the parametric curves presented here are for the ideal
shock tube, where side-wall boundary-layer growth and shock wave attenuation
are neglected. The application of these curves to a real shock tube in predicting
the thermodynamic conditions obtainable from given initial pressures is inher-
ently limited, then, to a first approximation. In the reduction of shock tube data
where more accurate values of T’; and P, are required, the measured shock speed,
attenuated to the end-wall, should be used in Egs. 2 and 4.




JPL TECHNICAL MEMORANDUM NO. 33-163

a speed of sound
m molecular weight
He: m = 4.003

Ne : m = 20.183
A :m= 39948
Kr : m = 83.80
Xe : m = 131.30

M, shock Mach number
P pressure
T temperature

NOMENCLATURE
y+1
o
vy—1
y—1
B %
y specific heat ratio = 5/3
Subscripts
1 initial driven-gas condition
2 condition behind incident shock wave
. initial driver-gas condition
5 condition behind reflected shock wave
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Fig. 1. Normal shock wave pressure ratio for an ideal gas (y = 5/3)
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Fig. 2. Normal shock wave temperature ratio for an ideal gas (y = 5/3)
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